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a b s t r a c t

The ability to recognize faces varies considerably between individuals, but does performance co-vary for
tests of different aspects of face processing? For 397 participants (of whom the majority were university
students) we obtained scores on the Mooney Face Test, Glasgow Face Matching Test (GFMT), Cambridge
Face Memory Test (CFMT) and Composite Face Test. Overall performance was significantly correlated for
each pair of tests, and we suggest the term f for the factor underlying this pattern of positive correlations.
However, there were large variations in the amount of variance shared by individual tests: The GFMT and
CFMT are strongly related, whereas the GFMT and the Mooney test tap largely independent abilities. We
do not replicate a frequently reported relationship between holistic processing (from the Composite test)
and face recognition (from the CFMT)—indeed, holistic processing does not correlate with any of our
tests. We report associations of performance with digit ratio and autism-spectrum quotient (AQ), and
from our genome-wide association study we include a list of suggestive genetic associations with perfor-
mance on the four face tests, as well as with f.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Face recognition is singularly important for human social inter-
action (Bruce & Young, 2012), but not everyone is equally good at
recognizing faces. Indeed, there are large individual differences:
Some people cannot recognize faces at all, while others remember
practically every face they see (Burton, White, & McNeill, 2010;
Duchaine, Germine, & Nakayama, 2007; Russell, Duchaine, &
Nakayama, 2009). In some situations, quantifying the ability to
detect, discriminate and recognize faces is of great practical
value—for example, in the screening of border-control officers
(Burton & Jenkins, 2011). However, in the history of understanding
perceptual and cognitive processes, the measurement of individual
differences has led also to theoretical insights. Thus Peterzell and
Teller (2000) used a covariance analysis to identify sub-channels
within the visual system that are specific to particular spatial fre-
quency bands; and in the specific case of face processing, studies
of individual differences have shown that there is remarkably little
overlap between general intelligence and the specific ability to rec-
ognize faces (Shakeshaft & Plomin, 2015; Wilmer, Germine, &
Nakayama, 2014).

Several tests have been developed to measure the ability to
detect faces or to remember them, but no single test assesses all
aspects of face processing. We here ask to what extent different
measures co-vary. For a large sample of healthy participants, we
established the distribution of individual performance on four
well-established tests of face processing: The Mooney Face Test,
the Glasgow Face Matching Test, the Cambridge Face Memory Test,
and the Composite Face Test.

The stimuli of the classical Mooney Face Test consist of seem-
ingly unrelated patches of pure black and pure white, which, with-
out apparent conscious effort on the viewer’s part, suddenly
arrange themselves to form the percept of a face (Mooney,
1957a, 1957b). This process of organization is referred to as closure.
The objective of the Mooney test is to detect the face, and the test is
considered a test of face detection and of holistic processing—the
processing of faces as a whole as opposed to processing of individ-
ual features separately.

The Glasgow Face Matching Test (GFMT) measures discrimina-
tion between unfamiliar faces. Participants are shown two pho-
tographs of faces and asked to indicate whether they are of the
same person, or of different persons (Burton et al., 2010). Contrary

http://crossmark.crossref.org/dialog/?doi=10.1016/j.visres.2016.12.014&domain=pdf
http://dx.doi.org/10.1016/j.visres.2016.12.014
mailto:rjv31@cam.ac.uk
http://dx.doi.org/10.1016/j.visres.2016.12.014
http://www.sciencedirect.com/science/journal/00426989
http://www.elsevier.com/locate/visres


218 R.J. Verhallen et al. / Vision Research 141 (2017) 217–227
to intuition, performance is far from perfect and there are marked
individual differences.

The Cambridge Face Memory Test (CFMT) is widely used to assess
face recognition ability and is often administered via the Internet
(Duchaine & Nakayama, 2006; Wilmer et al., 2010). Individuals
with prosopagnosia show significantly lower performance than
controls (Duchaine & Nakayama, 2006), and performance is highly
heritable (Wilmer et al., 2010).

The Composite Face Test is often-used but unstandardized: Many
researchers have created their own version (Richler, Cheung, &
Gauthier, 2011; Richler & Gauthier, 2014; Rossion, 2013; Young,
Hellawell, & Hay, 1987). In the Composite test, the participant
makes a same/different judgment between the top half of the
‘study’ face and the top half of the subsequently presented ‘target’
face, while ignoring the bottom halves. Face stimuli are created by
combining a top half and a bottom half, either of the same face or
of different faces; the two halves are either aligned or misaligned.
On a given trial, both—or either—the top and the bottom half of
each face may differ between the study face and the target face,
or may be the same. The test is designed to tap into holistic pro-
cessing: The bottom half should influence the perception of the
top half in the aligned conditions, since then all the features cohere
in a Gestalt; and if the top halves are the same but the bottom
halves differ, this holistic process would interfere with making a
correct judgment.

All four tests previously have been compared to other tests,
though not necessarily to one another. Foreman (1991) tested
127 participants on a visual-search task, the Mooney test, and
two other tests of closure (the Gollin Incomplete Figures Test and
the Poppelreuter test), but found no significant correlation in per-
formance between the Mooney test and any of the other tests. This
suggests that Mooney performance is independent of visual-search
efficiency, and that the Mooney test does not tap the same pro-
cesses as the two other tests of closure.

Burton et al. (2010) compared the Glasgow Face Matching Test
to three measures of visual processing in a sample of 300 partici-
pants. GFMT performance correlated significantly and moderately
strongly with matching of familiar line drawings of figures
(r = 0.42, p < 0.001), and significantly but less strongly with recog-
nition memory for faces (r = 0.29, p < 0.001). There was no signifi-
cant correlation with visual short-term memory for objects
(r = 0.05, p > 0.05).

Bowles et al., 2009 report a significant and strong correlation
(r = �0.61, p < 0.001, N = 124) between the Cambridge Face Mem-
ory Test and the Cambridge Face Perception Test, which asks par-
ticipants to sort a row of faces from ‘‘most similar” to ‘‘most
dissimilar” in comparison to a target face; the correlation is nega-
tive because the measure of the latter test is the number of errors,
rather than number correct, as is the case for the former). Wilmer
et al., 2012, 2014 report a significant and sizeable correlation
between the CFMT and a Famous Faces Test (r = 0.52, N = 1219),
but only relatively low correlations between the CFMT and two
other memory tests: The Abstract Art Memory Test (r = 0.26,
N = 1469) and a Verbal Paired-Associates Memory Test (r = 0.18,
N = 1469). It is on the basis of these—and other—results, that Wil-
mer and colleagues argue that face recognition is an independent
skill, exhibiting high correlations with other tasks of face process-
ing, but low correlations with other abilities, such as general
memory.

Several studies have investigated the relationship between face
recognition and holistic processing, but results are mixed: Some
report a positive correlation—either strong (DeGutis, Wilmer,
Mercado, & Cohan, 2013; Richler et al., 2011) or moderate
(Wang, Li, Fang, Tian, & Liu, 2012)—whereas others observe no sig-
nificant correlation (Konar, Bennett, & Sekuler, 2010). The interpre-
tation of these studies is complicated by differences in both
methodology and data analysis (DeGutis et al., 2013; Richler &
Gauthier, 2014; Rossion, 2013).

In the present study, a large cohort of participants completed
four tests that measure different aspects of face processing. The
tests were selected to reliably assess as many different aspects of
face processing as possible, while keeping our online test battery
sufficiently brief as to encourage a high rate of participation and
completion. Additionally, we hold genetic and phenotypic data
for our participants from their previous visits to our lab. Face
recognition previously has been shown to be strongly heritable
(Shakeshaft & Plomin, 2015; Wilmer et al., 2010), to be impaired
in people with autism (e.g. Weigelt, Koldewyn, & Kanwisher,
2012), and to be related to digit ratio (Leow & Davis, 2012). We
are in a position to report results from a genome-wide association
study (GWAS) that we conducted on participants’ performance on
our four face tests. We also report results from correlations of per-
formance on our four tests with both autism-spectrum quotient
and digit ratio.
2. Methods

2.1. Participants

Our 397 participants (252 female) were a subset of a cohort of
1060 who had previously completed a battery of perceptual tests
in our laboratory as part of the PERGENIC project (Goodbourn
et al., 2012; Lawrance-Owen et al., 2013; Verhallen et al., 2014).
Participants were healthy young adults between the ages of 18
and 42 (M = 24 years, SD = 4.3), all of European descent. When
tested on their original visit to the laboratory, 97% of the present
cohort had a (corrected) visual acuity of 0.2 logMAR or better.
The majority were students at the University of Cambridge. Partic-
ipants took part in order to have a chance of winning a Kindle 3G or
Amazon vouchers worth £120, the winner being chosen randomly
from all who completed the four tests. Ethical permission for the
study was given by the Cambridge University Psychology Ethics
Committee, and work was carried out in accordance with the Code
of Ethics of the World Medical Association (Declaration of Hel-
sinki). Participants gave informed consent before testing began.
2.2. Materials

The Mooney test was classically designed to be administered by
personal interview; in the current study we use our online, three-
alternative forced-choice (3AFC) version of the Mooney test
(Verhallen et al., 2014). The test uses the original forty Mooney
(1957a) faces, but each face is paired with two custom-made dis-
tractors. The position of the target image was random and 3AFC
stimuli remained on screen until participants made a response
by pressing the keys 1, 2 or 3 on their keyboard. The first trial, of
forty in total, was a practice trial with feedback.

The shortened version of the Glasgow Face Matching Test was
administered according to the original procedure (Burton et al.,
2010): For forty trials participants had to indicate whether two
photographs were of the same person or of different persons, by
pressing the keys L or A on their keyboard, respectively. Each grey-
scale photograph was cropped tightly around the external outline
of the face, ears and hair, and was presented on a white back-
ground. Stimuli remained on screen until participants made a
response. In line with the original procedure there was no practice
trial.

The Cambridge Face Memory Test was administered according
to the original procedure (Duchaine & Nakayama, 2006): The first
of three sections introduced six different faces for memorization,
each presented for three seconds, followed by three 3AFC tests
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for each face. Each greyscale photograph was cropped with an oval
frame that masks external features (hair and ears), and was pre-
sented on a black background. Sections 2 and 3 used these same
six faces to test face memory: Participants were shown, for ten sec-
onds at the beginning of each section, all six faces in an array. Sec-
tions 2 and 3 were of increased difficulty because of differing
lighting and viewing angles between pairs of photographs (Sec-
tion 2) or because of the superposition of noise (Section 3). One
practice trial with feedback preceded the test.

The Composite Face Test used in this study was the version
developed by Richler et al. (2011) incorporating stimuli from the
Max Planck Institute Face Database (Troje & Bülthoff, 1996). There
is debate about the differential merits of two existing designs, the
partial design and the complete design (Richler & Gauthier, 2013;
Rossion, 2013). By using the Composite test from Richler and col-
leagues we opted for the complete design; we did so because this
design also allows us to approximate—after data collection—the
measure that the partial design would have yielded. The test con-
sisted of 160 trials in which a greyscale composite face was shown
for 200 ms (the study face), followed by a blank inter-stimulus
interval of 500 ms and then a target composite face shown for
200 ms. Each face was presented on a black background, cropped
tightly around the external outline of the face including the ears,
but with the hair and hairline masked. Participants were asked to
use their keyboard to indicate whether the top halves of the two
faces were the same (L-key) or different (A-key), while ignoring
the lower half. The first trial was a practice trial with feedback.

Each of the 160 trials in the Composite test is categorized on
three variables: 1. ‘‘Similarity:” Whether the top halves of the
study and target faces are the same or different (this judgment con-
stitutes the task of the participant); 2. ‘‘Alignment:” Whether the
top and bottom halves of the target face are aligned or misaligned
(the study face was always aligned); and 3. ‘‘Congruency:”
Whether the similarity of the bottom halves between the study
and target faces is congruent or incongruent with the similarity of
their top halves.

The measure of interest for the Composite test is not the overall
score for all these conditions, but rather the holistic index (Richler
et al., 2011). First, a specific combination of the four conditions
(see Supplementary Materials, S.1, for detailed calculations) is used
to calculate two variables: The condition of interest (i.e. aligned con-
gruent trials minus aligned incongruent trials), and the control con-
dition (i.e. misaligned congruent trials minus misaligned incongruent
trials). Then, the residuals taken from regressing the variation of
the control condition out of the condition of interest constitute the
holistic index (DeGutis et al., 2013). The rationale is that—for the
aligned trials—participants who have strong holistic processing
will experience high interference from the bottom half of the face:
If the change in bottom halves is congruent with the change in top
halves, then these participants’ performance is aided, but if the
change in bottom halves is incongruent with the change in top
halves, performance is impaired. For the misaligned trials, the
assumption is that misalignment breaks holistic processing, since
the faces no longer form a coherent whole; the misaligned condi-
tion is thus not a measure of holistic processing.

2.3. Procedure

The present data were collected online, although all the partic-
ipants were personally known to us from their previous visits to
the laboratory. All 1060 participants of the original cohort were
sent a web-link to the online tests; 397 of them completed all four
tests. Each of these 397 participants completed the four tests in the
same sequence: The modified Mooney Face Test, the Glasgow Face
Matching Test, the Cambridge Face Memory Test, and the Compos-
ite Face Test. No feedback was given for any test, except for prac-
tice trials as indicated previously. Participants were instructed to
respond as quickly and as accurately as possible; their response
times were recorded, though not restricted. Before beginning the
tests, participants subjectively rated their face recognition ability
in response to the question ‘‘On a scale of 1 to 10 (with 1 being
really bad, and 10 being really good), where would you place your-
self in terms of recognizing faces?” Data analysis was performed
using R, unless indicated otherwise.
3. Results

3.1. Distributions and correlations for the four tests of face processing

The range of scores is wide for all tests. The mean proportion
correct for the modified Mooney Face Test is 34.9 trials out of 39
(SD = 2.8, range 25–39; 30 participants at ceiling), for the Glasgow
Face Matching Test 31.5 trials out of 40 (SD = 4.6, range 14–40;
four participants at ceiling, five participants at or below chance
level), for the Cambridge Face Memory Test 54.3 trials out of 72
(SD = 9.1, range 26–72; one participant at ceiling), and for the Com-
posite Face Test 137.8 trials out of 160 (SD = 11.6, range 79–157;
one participant below chance level); as the holistic index is a stan-
dardized residual, it has a mean of 0 and SD of 1.0 (range �2.62 to
3.53; see Table 2 for further statistics). To allow comparison of the
raw scores of the different tests, we give in Table 1 the perfor-
mance scores converted to percentages.

For the Mooney test, our sample’s results are comparable to
those reported by Vigen, Goebel, and Embree (1982), who—for a
sample of 100 undergraduates—find a mean performance of
81.0% correct (SD = 6.6%) using the Mooney stimuli in a lab-based
experiment. Our participants’ mean score and range of perfor-
mance for the GFMT are comparable to previously reported results
(Burton et al., 2010: M = 81%, SD = 9.7%), though our distribution
extends slightly further at the lower end. Performance on the CFMT
is also comparable to previous studies (Bowles et al., 2009; Wilmer
et al., 2010), and overlaps at the lower end with the range of per-
formance by individuals with prosopagnosia (Duchaine &
Nakayama, 2006). Moreover, the correlations we observe when
comparing performance of the three parts of the CFMT to one
another are almost identical to those observed by Duchaine and
Nakayama (2006): We observe Spearman’s correlations of
q = 0.34 between parts 1 and 2, q = 0.41 between parts 1 and 3,
and q = 0.74 between parts 2 and 3.

When we investigate plots from DeGutis et al. (2013, their
Fig. 4C), our distribution of the holistic index seems similar, though
wider; it exhibits kurtosis of 0.60 and a slight positive skew of 0.29
(see also Table 2 for the distributions of d0 broken down by condi-
tion; and see Fig. 2 in §3.5 for a plot of d0 broken down by the con-
ditions alignment and congruency).

Correlations between performances on each pair of tests are
highly significant (see Table 3), except for pairs that included the
Composite Face Test’s holistic index (for which p-values ranged
between 0.04 and 0.53, before Bonferroni correction). However,
when we simply consider the raw score on the Composite test
(the number of trials to which a participant responded correctly)
we do observe significant correlations with performance on each
of the other three tests.

Since the distributions of scores were not normal, we give both
Pearson’s r and Spearman’s q; the corresponding values are similar.
For the four tests, the shared variance of the significant inter-
correlations (estimated from the square of Pearson’s r) ranges from
a fairly high 23% between the Cambridge Face Memory Test and
the Glasgow Face Matching Test (see Fig. 1A), to a low 4% between
the Mooney Face Test and the Glasgow Face Matching Test (see
Fig. 1B).



Table 3
Correlations between performance on pairs of tests: Pearson’s r and Spearman’s q for all combinations of the four tests: The modified Mooney Face Test (Mooney), the Glasgow
Face Matching Test (GFMT), the Cambridge Face Memory Test (CFMT), and the Composite Face Test’s Holistic Index (Holistic; d0), as well as the Composite Face Test’s overall Raw
Score (Raw Score). All correlations use the full sample size of N = 397, and p-values are uncorrected. Confidence intervals at 95% are given between square brackets.

Mooney GFMT CFMT Holistic

Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

GFMT 0.20**

[0.10, 0.29]
0.21**

[0.11, 0.30]
CFMT 0.31**

[0.22, 0.39]
0.31**

[0.22, 0.40]
0.48**

[0.40, 0.55]
0.49**

[0.41, 0.56]
Holistic �0.06n.s.

[�0.16, 0.03]
�0.09n.s.

[�0.19, 0.01]
�0.02n.s.

[�0.11, 0.08]
�0.01n.s.

[�0.11, 0.09]
�0.02n.s.

[�0.12, 0.08]
�0.03n.s.

[�0.13, 0.07]
Raw Score 0.19*

[0.09, 0.28]
0.20**

[0.10, 0.29]
0.26**

[0.17, 0.35]
0.33**

[0.24, 0.41]
0.40**

[0.31, 0.48]
0.42**

[0.34, 0.50]
�0.30**

[�0.39, �0.21]
�0.26**

[�0.35, �0.17]

n.s. = not significant.
* p < 0.001.
** p� 0.0001.

Table 1
Summary statistics for the four tests. The minimum (Min.), mean and maximum (Max.) scores in percentages, standard deviation (SD) in percentage, chance of guessing correctly
(Chance), and Guttman’s reliability indices k2, k3 (i.e. Cronbach’s alpha) and k6 for our four tests: the Modified Mooney Face Test (Mooney), the Glasgow Face Matching Test
(GFMT), the Cambridge Face Memory Test (CFMT), and Overall Raw Score of the Composite Face Test (Composite – Raw Score), including minimum, mean, maximum, and standard
deviation, as well as k3, for the Holistic Index (Holistic Index) of the Composite Face Test.

Min. Mean Max. SD Chance k2 k3 k6

Mooney 64 90 100 7.2 ⅓ 0.69 0.67 0.69
GFMT 35 79 100 11.5 ½ 0.72 0.71 0.76
CFMT 36 75 100 12.6 ⅓ 0.89 0.88 0.91
Composite (Raw Score) 49 86 98 7.3 ½ 0.88 0.88 0.94
Holistic Index �2.62 0 3.53 1.0 n.a. n.a1 0.53 n.a.

1 Guttman’s k2 and k6 both require raw data, and thus cannot be calculated for the holistic index, which uses d0 . Instead, we manually calculated split-half reliability, the
result of which we report in the k3 column: a Spearman-Brown corrected reliability of q = 0.53 (SD = 0.06), the mean of 5,000 splits of the data. See Supplementary Materials
(S.2) for details.

Table 2
Summary statistics for the four conditions of the composite face test. The Minimum (Min.), Mean, Maximum (Max.), and Standard Deviation (SD) of d0 , as well as the percentage of
participants who were at Ceiling, and the Kurtosis and Skew of the distribution of d0 , separately for the four Conditions Aligned Congruent, Aligned Incongruent, Misaligned
Congruent, and Misaligned Incongruent.

Min. Mean Max. SD % Ceiling Kurtosis Skew

Aligned Congruent 0.12 3.02 3.96 0.68 16.4 0.74 �0.69
Aligned Incongruent �3.16 1.63 3.96 0.94. 0.8 2.61 �0.58
Misaligned Congruent 0.00 2.39 3.96 0.71 3.0 0.10 �0.11
Misaligned Incongruent �1.82 2.30 3.96 0.86 3.5 2.31 �0.71
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To judge whether all trials of each of the four tests that we used
were informative, we investigate performance per item, for each
test. This item analysis shows that, for the GFMT and the Compos-
ite Face Test, no item is solved by all participants, whereas for the
modified Mooney Face Test two items are solved by all participants
(items 7 & 17), and for the CFMT, one (item 1). Participants perform
below chance level on one item in the GFMT (item 27) and on one
item in the Composite Face Test (item 3). In Table 1 we also report
the internal reliabilities of the four tests calculated using Gutt-
man’s k6 (Guttman, 1945; Revelle & Zinbarg, 2009); we also report
Guttman’s k2 and k3 (i.e. Cronbach’s alpha) to enable comparison
with other studies that report them. Since the calculation of Gutt-
man’s k2 and k6 requires raw performance data, we manually cal-
culate the Spearman-Brown corrected split-half reliability of our
holistic index, which we also report in Table 1 (see Supplementary
Materials, S.2, for details).

To investigate whether a task is generally performed instanta-
neously, or rather benefits from longer exposure times, we corre-
late performance on our four tests with the amount of time
taken for each test. We observe a significant correlation between
time taken and performance for the Glasgow Face Matching
Test only: Participants who took longer tended to have a higher
score, although only 6% of variance in accuracy could be
predicted from speed (Spearman’s q = 0.23 [0.14, 0.33], r2 = 0.06,
p = 2.3 � 10�6).

3.2. A common factor underlying performance on tests of face
processing: f

Although the several tests vary in the extent that they correlate
with one another (Table 3), all pairs of measures (except those
including the holistic index) do exhibit positive correlations, much
in the way that the very diverse subtests of the Wechsler Adult
Intelligence Scale exhibit a pattern of positive correlations. We
therefore conducted a factor analysis on scores from the four tests,
excluding the holistic index. As our non-normally distributed
scores may violate assumptions of normally distributed residuals,
we applied a rank-based inverse normal transformation by which
scores are converted to rank orders, with each quantile of the
resulting distribution mapped on to the corresponding quantile
of a normal distribution. We also included four non-face measures
of visual perception from the PERGENIC test battery: ‘contrast sen-
sitivity’, i.e. thresholds for detecting sinusoidal gratings of 3 cycles
per degree; ‘coherent form (sine wave)’, i.e. thresholds for detect-
ing the orientation of sinusoidal gratings formed by sinusoidally
varying dot density; ‘coherent form (Glass patterns)’ i.e. thresholds



Fig. 1. Scatterplots comparing normalised performance (z-scores) across two tests. Panel A shows the two tests with the highest correlation: The Cambridge Face Memory
Test and the Glasgow Face Matching Test (Pearson’s r = 0.48). Panel B shows the two tests with the lowest correlation: The modified Mooney Face Test and the Glasgow Face
Matching Test (Pearson’s r = 0.20). Point size is scaled linearly to reflect the number of participants with that particular combination of scores. To aid interpretation on these
normalized axes, we include the dashed, grey line (x = y), upon which all points would fall in the case of a perfect correlation.

Table 4
For each of the four face tests, as well as for four non-face measures of visual
perception, are listed the loadings of the three factors extracted using factor analysis.
The loadings given here are the result of a varimax rotation with Kaiser Normaliza-
tion. For our factor analysis, N = 376. For clarity, factor loadings greater than 0.40 are
highlighted in boldface.

Test Factor 1 Factor 2 Factor 3

Mooney 0.42 0.51 �0.29
GFMT 0.76 0.02 �0.02
CFMT 0.80 0.19 0.00
Composite (Raw Score) 0.72 �0.03 0.20
Coherent form (Glass patterns) 0.09 0.82 0.20
Coherent form (sine wave) �0.06 0.76 0.35
Contrast sensitivity 0.14 0.21 0.68
Coherent motion �0.01 0.11 0.80
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for detecting the orientation of gratings formed by Glass patterns
of varying coherence; and ‘coherent motion’, i.e. percentage of
coherent dots needed to report direction in an array of moving dots
(for methods see Goodbourn et al., 2012 and Bosten et al., 2015).
We selected these measures from the larger battery because they
test a range of detection and integration processes that might or
might not share variance with different components of face pro-
cessing. We used SPSS version 21 for the factor analysis. The
method of extraction was PCA, and we applied a Varimax rotation.
We held data on all measures entered into the factor analysis for
376 of our sample of 397 participants.

The factor analysis identified three factors (by inspection of the
Scree plot) that explained a cumulative variance of 61.6% (29.5,
20.4 and 11.7% respectively), and which had Eigenvalues of 2.4,
1.6 and 0.9, respectively. The first factor loaded positively and
strongly on the four face measures (see Table 4), but not on the
other measures of form and motion perception. The second factor
loaded strongly and positively on the Mooney test, on ‘coherent
form (Glass patterns)’, and on coherent form (sine wave). The third
factor loaded strongly and positively on contrast sensitivity and on
coherent motion. Table 4 gives the loadings of the three factors
with Varimax rotation; but the unrotated factors gave similar
results.

The first factor of Table 4 recalls the celebrated factor g or ‘gen-
eral ability,’ which Spearman judged to underlie all measures of
intelligence (Spearman, 1927). We assess its status in the Discus-
sion below, but for the remainder of the Results refer to it as ‘f.’
3.3. Phenotypic correlates of face-processing ability

Since our participants had previously visited our lab as part of
the PERGENIC project, we hold detailed genotypic and phenotypic
data for most of them.
3.3.1. Sex & age
We have previously reported the significant sex difference that

we observe for performance on the modified Mooney test
(Verhallen et al., 2014); we do not observe a significant sex differ-
ence in performance for any of the other tests, nor for f (Cohen’s d
ranged from 0.02 to 0.31). We observe a significant effect of age for
performance on the GFMT (Spearman’s q = 0.15 [0.05, 0.24],
p = 0.003), for performance on the CFMT (q = 0.20 [0.11, 0.29],
p = 5.2 � 10�5) and for f (q = 0.21 [0.11, 0.30], p = 5.9 � 10�5); in
the case of the other measures, Spearman’s q ranged from �0.04
to 0.07.

3.3.2. Self-ratings of facial recognition
Subjective rating of the ability to recognize faces is significantly

correlated with performance on all four of the face tests (including
overall raw score on the Composite Face Test) and with f, but not
with the holistic index (see Table 5). On average, participants rate
themselves 6.5 on a scale of 1 to 10 (SD = 1.8) with a range covering
the full scale.

3.3.3. Autism-Spectrum Quotient
Previous studies have reported a link between Autism-

Spectrum Quotient (AQ) and face recognition (Halliday,
MacDonald, Sherf, & Tanaka, 2014), and since a subset of 316
(203 female) of our 397 participants had previously completed
the AQ questionnaire (Baron-Cohen, Wheelwright, Skinner,
Martin, & Clubley, 2001), we also examined this possible link.
The mean AQ score in our subset of 316 participants is 17.8



Table 5
The Spearman Correlation Coefficients and Probability Values (after Bonferroni
Correction for six Measures) of subjectively-rated Ability with Performance for all
four Tests: The modified Mooney Face Test (Mooney), the Glasgow Face Matching Test
(GFMT), the Cambridge Face Memory Test (CFMT), and the Composite Face Test’s
Holistic Index (Holistic) as well as overall Raw Score (Raw Score). Also included is the
Correlation with f. All correlations use the full sample size of N = 397. Confidence
intervals at 95% are given between square brackets.

Test Spearman’s q p

Mooney 0.21 [0.11, 0.30] 1.5 � 10�4

GFMT 0.29 [0.19, 0.37] 4.4 � 10�8

CFMT 0.41 [0.33, 0.49] 4.8 � 10�17

Holistic 0.01 [�0.09, 0.11] 1
Composite (Raw Score) 0.17 [0.07, 0.27] 0.004
f 0.37 [0.28, 0.45] 1.8 � 10�13
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(SD = 7.9), with a range from 3 to 39 (the maximum possible score
is 50); a score of 32 or higher is suggestive of autism-spectrum
disorder (Baron-Cohen et al., 2001). Though we do not observe a
significant sex difference in AQ score (Mfemales = 17.4,Mmales = 18.7;
Mann–Whitney U = 10,002, p = 0.06), the trend is for males to score
higher than females.

When we consider self-rated face-recognition ability, we
observe a significant, negative correlation with AQ (Spearman’s
q = �0.23, p = 4.8 � 10�5, with sex as covariate). However, we do
not observe a correlation between AQ and performance for any
of our tests, or with the holistic index, or with f; and also not when
the effect of sex is removed from all variables by means of regres-
sion, or when analyses are conducted for females and males sepa-
rately. Our finding contrasts with that of Halliday et al. (2014), who
observed a small, but significant, negative correlation between AQ
and performance on an immediate memory task using faces
(r = �0.20, p = 0.02, N = 124 university students); we had 89%
power to observe an association of the same magnitude
(r2 = 0.04; a = 0.008, corrected for 6 tests). For another population
of undergraduate students, Richler and Gauthier (2013) report cor-
relations between CFMT and AQ that are of opposite sign for men
and women. Our own results do not replicate these findings, even
when we follow Rhodes and colleagues (2013) in calculating a total
score (totaling the raw scores of all items, rather than the usual
approach of labeling response to items in a binary fashion). It is
interesting to note however, that Hedley, Brewer, and Young
(2011) found impairment in face recognition only for individuals
actually diagnosed with autism, and not as a correlate of autistic
traits as measured by the AQ questionnaire.

It could be the case that the relationship between AQ and face
cognition does not follow gradually the autistic spectrum, but
rather is bimodal, and becomes apparent only when comparing
two distinct groups. Indeed, we do observe a significant difference
in CFMT performance when comparing participants with AQ of 32
or higher (N = 21, of whom 14 females), to participants with AQ
below 32 (N = 295; Mann-Whitney U = 2127.5, p = 0.02). The latter
group scores half a standard deviation higher than the former
(M = 75.3% correct vs. 68.9% correct).
1 For reference: the distribution of GCSE scores for 2009 (the year prior to the initial
PERGENIC test battery) has a mean of 5.08 (SD = 1.73), with a range from 0 to 8
(Stubbs, 2009).
3.3.4. Digit ratio
A previous study by Leow and Davis (2012) has linked the face-

inversion effect to digit ratio (Manning, Scutt, Wilson, & Lewis-
Jones, 1998); and for the present cohort we ourselves have previ-
ously reported a significant correlation between digit ratio and
performance on our 3AFC adaptation of the Mooney test
(Verhallen et al., 2014). However, we do not observe a significant
correlation between digit ratio and performance on any of the
other three tests, nor with the holistic index, even when the effect
of sex is removed. f exhibited a small, positive correlation with
digit ratio (Spearman’s q = 0.12, p = 0.02) but this correlation
would not survive a Bonferroni correction.
3.3.5. Scholastic achievement
We do not hold IQ scores for our participants, but for a subset of

our participants (N = 229, of whom 148 were female) we hold self-
reported scores for the standard British qualification General
Certificate of Secondary Education (GCSE; M = 7.45, SD = 0.67,
range = 3.56–8.001), which has been shown to correlate highly with
performance on IQ tests (Deary, Strand, Smith, & Fernandes, 2007).
Neither f nor any of the individual face measures showed a signifi-
cant relationship to GCSE scores (the strongest correlation was with
the CFMT: Spearman’s q = �0.12 [�0.25, 0.00], p = 0.05).
3.4. Genotypic correlates of face-processing ability

We have previously reported a significant genetic association
with performance on the Mooney test that we observed in our
genome-wide association study (Verhallen et al., 2014). In this
study, to allow for multiple comparisons across single-nucleotide
polymorphisms (SNPs), a correction is required for the number of
independent genomic locations tested. According to the criterion
of Li, Yeung, Cherny, and Sham (2012), a p-value of 1.47 � 10�7

is required for an association with any given SNP to achieve signif-
icance at a = 0.05 in our study (Verhallen et al., 2014). However, we
choose to apply a second rigorous test to guard against false posi-
tives: A whole-genome permutation analysis (Purcell et al., 2007).

At the 1.47 � 10�7 level of probability, we observe a further
genetic correlate of performance, of ranked overall raw score on
the Composite test (p = 1.31 � 10�7; N = 369) with rs7701353. This
SNP is located in the intergenic region between the genes BNIP1
and NKX2-5 on chromosome 5. The minor allele is associated with
higher raw score on the Composite test, and the minor allele fre-
quency of rs7701353 is 0.35 in our sample; the SNP is in Hardy–
Weinberg equilibrium (p = 0.55). However, this association does
not survive a permutation procedure (p = 0.22; 25,000 permuta-
tions), and thus we do not claim it to be significant.

We found no significant genetic associate of f, though two SNPs
came up as ‘suggestive’ associations (i.e. associations with an
uncorrected probability below 2.95 � 10�6, but above
1.47 � 10�7): rs272708 (p = 1.26 � 10�6), which lies on chromo-
some 7, and rs4866542 (p = 1.29 � 10�6), which lies on chromo-
some 5 (see also Table 6). These SNPs are both intergenic.

We do not observe any other genetic correlates of performance
on the face-processing tests, nor with the holistic index. However,
the sample for whom we had genetic information (N = 370, of
whom 235 female) was small by GWAS standards. For the guid-
ance of other researchers, we record in Table 6 the SNPs that had
suggestive associations with our performance measures. Sex was
entered as a covariate in all the genetic analyses (for a more
detailed description of the genetic methods, see Goodbourn et al.,
2014 and Lawrance-Owen et al., 2013).
3.5. Absence of a relationship between the holistic index and CFMT
performance

The absence of a correlation between the Composite test’s holis-
tic index and performance on the CFMT is surprising, since it con-
tradicts previous findings (DeGutis et al., 2013; Richler et al., 2011;
Wang et al., 2012). We thus wanted to verify that we had enough
power to observe an effect, and to make sure that the relationships



Table 6
Suggestive SNPs for performance on three out of four Tests: The Mooney Test (‘Mooney’), the Cambridge Face Memory Test (‘CFMT’), and the Composite Face Test, presented
separately for the Holistic Index (‘Holistic’) and Raw Score (‘Raw Score’). This Table also lists a suggestive Region for the First Factor of our Factor Analysis (‘f’). No suggestive SNPs
emerged for the GFMT. For each Test we list the suggestive Region, the SNP with the highest significance value in that Region (‘Lead SNP’) along with its Significance Value, the
Gene in which the lead SNP is located (or ‘intergenic’ if it is located in-between Genes), and additional suggestive SNPs in that Region. All suggestive SNPs have p-Values below
2.95 � 10�6 and Minor Allele Frequencies above 5%. Performance data for all Measures except the Holistic Index are ranked before being entered into the Genetic Analysis (see
also Verhallen et al., 2014). Genomic references were based on the Human February 2009 (GRCh37/hg19) assembly sequence. For further Details of the Genome-Wide Association
Analysis, see Verhallen et al. (2014).

Test Region Lead SNP Significance Gene Additional SNPs

Mooney 12q24.32 rs9738216 2.09 � 10�7 SLC15A4 rs1059312
rs7962918
rs900982
rs7960920

CFMT 7p15.3 rs272708 1.68 � 10�7 (intergenic)
1q25.1 rs7520814 1.81 � 10�6 SLC9C2 rs16846206
1p36.21 rs10927998 2.76 � 10�6 KAZN
10p12.1 rs7086007 2.89 � 10�6 KIAA1217 rs10508677

Holistic 7q21.13 rs12670363 1.26 � 10�6 STEAP2–AS1

Raw Score 16q23.1 rs2454141 2.45 � 10�6 (intergenic)

f 7p15.3 rs272708 1.26 � 10�6 (intergenic)
5p15.33 rs4866542 1.29 � 10�6 (intergenic)

Table 7
Pearson’s r and Spearman’s q, and associated p-values, for Associations between CFMT Performance and d0 for all conditions of the Composite Face Test (‘‘Composite”)
individually: For the aligned and misaligned Trials, and separately for the aligned congruent, aligned incongruent, misaligned congruent, and misaligned incongruent Trials. All
correlations use the full sample size of 397. Confidence intervals at 95% are given between square brackets.

Composite CFMT

Pearson p Spearman p

Aligned 0.36 [0.27, 0.44] 1.15 � 10�13 0.37 [0.28, 0.45] 2.86 � 10�14

Congruent 0.32 [0.23, 0.41] 6.26 � 10�10 0.31 [0.22, 0.40] 2.09 � 10�10

Incongruent 0.26 [0.17, 0.35] 1.53 � 10�7 0.28 [0.19, 0.37] 1.67 � 10�8

Misaligned 0.45 [0.37, 0.53] 3.08 � 10�20 0.44 [0.36, 0.52] 3.42 � 10�20

Congruent 0.43 [0.35, 0.51] 1.88 � 10�18 0.42 [0.34, 0.50] 1.68 � 10�18

Incongruent 0.35 [0.26, 0.43] 1.57 � 10�12 0.36 [0.27, 0.44] 5.44 � 10�14

Note: The correlations with CFMT performance—as reported in this table—replicate previous findings (DeGutis et al., 2013), as opposed to the absence of a correlation when
we use the holistic index (see main text).

2 In all preceding analyses in this paper we refer to the regression-based holistic
index when we write only ‘holistic index.’
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between the various conditions (similarity, alignment, congru-
ency) were similar to those reported by previous studies.

The internal reliability of the holistic index from our data is
acceptable (.53); together with the internal reliability of the CFMT
(.91), the maximum expected correlation is

p
(.53�.91) = 0.69. This

is well above the maximum expected correlations reported in pre-
vious studies that did observe a significant correlation between the
holistic index and CFMT performance (DeGutis et al., 2013; Ross,
Richler, & Gauthier, 2014). Indeed, we do observe significant corre-
lations with performance on the CFMT for d0 of all conditions indi-
vidually (see Table 7), which is in accordance with previous
findings (DeGutis et al., 2013, their Table 1).

To investigate further the absence of a correlation between the
holistic index and CFMT performance, we look into the internal
relationships between our trial variables (similarity, alignment,
and congruency) and find them to be consistent with earlier work
(e.g. DeGutis et al., 2013; Konar et al., 2010; Richler et al., 2011;
Wang et al., 2012). For example, investigating the same and differ-
ent trials, we do not observe a significant alignment effect for dif-
ferent trials (Wilcoxon signed-rank W = 36,453, puncorrected = 0.04,
r = �0.10), but we do for same trials: The mean raw score for mis-
aligned same trials is higher than the mean raw score for aligned
same trials (34.5 vs. 33.1 trials; W = 21,995, p = 4.44 � 10�9,
r = �0.29). This finding confirms those of Konar et al. (2010),
Richler et al. (2011), and Wang et al. (2012).

Separately, we observe a significantly higher mean raw score for
congruent as compared to incongruent trials, regardless of align-
ment (72.4 vs. 65.3 trials; W = 70,649, p = 3.75 � 10�56,
r = �0.79). Furthermore, we observe a significant interaction
between congruency and alignment (Friedman v2 = 582.44,
p = 6.45 � 10�126): The mean raw score for congruent trials is sig-
nificantly higher than that for incongruent trials, but only when tri-
als are aligned (W = 73,010.5, p = 7.93 � 10�63, r = �0.84 for aligned
trials; W = 32,241.5, puncorrected = 0.03, r = �0.11 for misaligned tri-
als; see Fig. 2). This finding confirms that of DeGutis et al. (2013).

The above findings were virtually identical when using d0

instead of raw scores (the effect of same and different trials cannot
be investigated using d0, since both same and different trials are
used in calculating d0), and we also obtained very similar results
when we performed the analyses using A0—an alternative to d0

(Stanislaw & Todorov, 1999).
Some previous studies have calculated the holistic index using

subtraction rather than regression. The study most similar to ours
is that of Richler et al. (2011), whose stimulus set and methods we
follow. Those authors calculated a holistic index by subtracting the
control condition from the condition of interest. We therefore also
compute a holistic index using subtraction, but again we do not
observe a significant correlation with performance on the CFMT
(Spearman’s q = �0.05, p = 0.30; Pearson’s r = �0.05, p = 0.36),
whereas Richler and colleagues do (Pearson’s r = 0.40, p = 0.014).2

For further examples of data exploration, including the exclu-
sion of outliers and use of reaction time instead of accuracy, see
the Supplementary Materials (S.3).



Fig. 2. Boxplot illustrating the alignment by congruency interaction for the
Composite Face Test. Mean d0 is plotted separately for the four conditions, from
left to right: Aligned congruent, aligned incongruent, misaligned congruent, and
misaligned incongruent trials. Within the boxes, horizontal bars indicate the median,
and solid points indicate the mean; the lines connecting the solid points (a solid line
for congruent, and a dashed line for incongruent) illustrate the interaction: Mean d0

for aligned congruent trials is significantly higher as compared to aligned incongruent
trials, while mean d0 for misaligned congruent and misaligned incongruent trials do
not differ significantly. The bottom and top boundaries of the box indicate the 1st
and 3rd quantile, respectively; the whiskers (the vertical lines extending from the
bottom and top boundaries of the box) extend to the lowest and highest value that
is within 1.5-times the inter-quartile range (IQR) of their respective boundary. Grey
open circles are outliers, defined as such by virtue of being 1.5 � IQR above or below
the 3rd or 1st quantile, respectively. Because data are plotted separately per
condition, some of the grey dots denote the same participant: of the 19 outliers
shown here, 17 are individual participants. In all four conditions, d0 hits ceiling (see
also Table 2).
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4. Discussion

4.1. f, a general factor underlying the processing of faces

In the field of intelligence testing, a pattern of positive correla-
tions—the ‘positive manifold’—is invariably found amongst the
diverse tests of a cognitive battery (Mackintosh, 2011). Spearman
adopted the term g for the common factor that emerges from a fac-
tor analysis of test scores. Nevertheless, there are groups of sub-
tests that correlate more strongly with each other than they do
with other sub-tests; and Thurstone emphasized the specific fac-
tors that emerge from a factor analysis.

In so far as intelligence is heritable, the pattern of one general
and other specific factors makes good sense. The construction,
maintenance and operation of the central nervous system must
depend on many thousands of proteins—and the genes that encode
them. Most of these genes are polymorphic, either in their coding
regions or in the non-coding regions that affect their expression.
It is reasonable to suppose that there are many polymorphisms
that have a general effect throughout the cerebral cortex, while
there will be many others whose effect is limited to particular pro-
cessing modules.

Just as general and specific factors are observed in the case of
intelligence tests, it reasonable to expect general and specific fac-
tors underlying the very complex processes that must underlie
the discrimination and identification of faces. In the present study,
we find highly significant correlations between all pairs of tests, but
the correlations differ substantially in their magnitude: the shared
variance varies from 4% to 23%.We have proposed the term f for the
factor on which all the present face tests load, but we emphasize
that f, like g, is no more than a summary of a pattern of correlations
and should not be reified. In the case of g we now know—from
Genome-wide Complex Trait Analysis—that it has a heritability of
the order of 50%, but we know equally firmly that it cannot be iden-
tified with any single polymorphic gene or even with a small num-
ber of genes (Davies et al., 2011; Plomin & Deary, 2015).

We also emphasize that f may not be specific to faces. Our
results show that several low-level visual functions—contrast sen-
sitivity, recognition of oriented gratings and perception of coherent
motion—do not load on this factor; but the possibility remains
open that tests of, say, object recognition would load on f. Further
factor-analytic studies of face and non-face tests offer an attractive
route for understanding the nature of f.

It is instructive that f does not correlate significantly with GCSE
scores, our surrogate measure of g. This finding is consistent with
earlier studies (using the Cambridge Face Memory Test) that have
found little or no correlation between general intelligence and the
ability to process faces (Shakeshaft & Plomin, 2015; Wilmer et al.,
2014). We must emphasize, however, that a large part of the pre-
sent sample comprises undergraduate students at a selective uni-
versity, and is thus restricted in range of intelligence; this would
limit our ability to detect any relationship that may be present in
a more diverse sample.

Of the four tests of face processing, only the Mooney test loads
markedly on the second factor of Table 4. This is the factor on
which the two tests of ‘coherent form’ load very strongly. Perhaps
what the three tests have in common is the requirement to inte-
grate local visual features across space. In other words, they per-
haps all require the (still-mysterious) process of ‘perceptual
organization’. However, the detection of coherent motion—which
nominally requires similar processes—does not load on this factor,
but loads strongly on the third.

4.2. Specific sub-processes in the perception of faces

The four tests of face perception considered here vary in the
extent to which they engage different sub-processes required for
the perception of faces. Traditional models of the analysis of faces
propose two main sub-mechanisms: ‘‘structural encoding” and
‘‘face recognition units” (Bruce & Young, 1986), or, in another ter-
minology, ‘‘early perception of facial features” and ‘‘perception of
unique identity” (Haxby, Hoffman, & Gobbini, 2000). Each of these
stages, of course, is likely to require many specific sub-stages.
Freiwald and Tsao (2010) distinguished six interconnected face-
selective regions of the macaque temporal lobe, and identified
some of these regions with distinct levels of processing: In the
middle lateral and middle fundus patches, neurons were view-
specific; in the anterior lateral area, neurons were often tuned to
mirror-symmetric views; and in the anterior medial area, neurons
were most selective for identity and tended to generalize across
many viewpoints.

Let us consider one particularly interesting result from the pre-
sent study, the low level of shared variance between the Mooney
test and the Glasgow Face Matching Test. These results could per-
haps be taken to signify that the Mooney test is more a test of clo-
sure (a process not required for the GFMT), and that the GFMT is
more a test of image comparison (a process not required for the
Mooney test). However, the relatively high shared variance (10%)
between the Mooney test and the Cambridge Face Memory Test
does suggest that the Mooney test probes sources of variance
common to other tests of face processing. For instance, the Mooney
test requires the participant to construct—from the two-
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dimensional, two-tone image—a coherent three-dimensionalmodel
both of the light source and of the face (Moore & Cavanagh, 1998);
and in performing this feat of internal modeling the participant is
likely to draw on stored experiences of faces of different age, sex
and demeanor.Many of the required underlying processeswill have
a less prominent role when a participant performs the Glasgow Face
Matching Test, in which the participant is asked to compare only
two-dimensional images from similar viewpoints. It may also be
relevant that the final phase of the CFMT requires participants to
recognize faces in images degraded with random visual noise; it is
possible that detection of faces in the two-tone, thresholded
Mooney images relies to some extent on the same visual processes
as does the extraction of faces embedded in noise.3

The Glasgow Face Matching Test and Cambridge Face Memory
Test have the highest shared variance: 23%. This is perhaps surpris-
ing, because the GFMT primarily entails face discrimination, while
the CFMT requires face recognition; the latter process relies on
learning and memory in a way that the former does not. Further-
more, the stimuli used in these two tests differ markedly. Of partic-
ular note is that head outline and hair are masked for the CFMT
faces, while both are visible in the GFMT; discrimination and
recognition performance for unfamiliar faces may rely heavily on
such features (Young, Hay, McWeeny, Flude, & Ellis, 1985).

The correlation we observe here between the GFMT and CFMT
(r = 0.48) is substantially stronger than the correlation that
Burton et al., 2010 observe between the GFMT and a custom-
made face recognition task (r = 0.29). In fact, Burton and Jenkins
(2011) argue that unfamiliar faces are processed as objects rather
than faces. If this were indeed the case, then the high shared vari-
ance that we observe between a recognition test (CFMT) and an
unfamiliar face test (GFMT) could indicate that object-recognition
processes are also involved in the recognition of faces (as in the
CFMT), or rather that the faces in the CFMT remain effectively
unfamiliar. Alternatively, it could be that the ‘recognition process’
applied during the CFMT involves a ‘discrimination process’
between the three faces concurrently presented in the CFMT’s
3AFC paradigm—a process akin to that used during the GFMT.
The high correlation we observe is unlikely to be due to similarity
of stimuli between the GFMT and CFMT: The images of the two
tests come from different databases, and differ as to whether exter-
nal features such as face shape and hair are visible. In addition, the
low correlation between GFMT and face recognition reported by
Burton et al. (2010) was observed even though their two tests used
images from the same database.
4.3. The holistic index

Despite our large sample size, we do not observe a correlation
between the holistic index (ostensibly the measure of interest for
the Composite test) and performance on any of the other tests,
whereas many previous studies report a strong, positive correla-
tion with CFMT performance or a similar measure of face recogni-
tion (DeGutis et al., 2013; Richler et al., 2011; Wang et al., 2012).
Our results are more in accord with those of Konar et al. (2010),
who also do not observe a significant relationship between holistic
processing and face identification. However, their task of face iden-
tification was arguably more a task of face discrimination (akin to
the GFMT), and oddly enough we do find a significant correlation
between the holistic index and CFMT performance when we pair
the idiosyncratic manner in which Konar et al. (2010) calculated
the holistic index with a regression-based analysis (see Supple-
mentary Materials, S.3). However, by that point the calculated
statistic has become conceptually meaningless. Indeed, most stud-
3 We thank an anonymous reviewer for this suggestion.
ies that administer the Composite test use either different test ver-
sions, or different ways of calculating the holistic index, or both.
The comparison of results is thus undermined.

Although Richler, Floyd, and Gauthier (2014) have recently
developed a new, 3AFC version of the Composite test that could
address the aforementioned issues, the holistic index may not
reflect a single source of variation: Independently of being good
or bad at holistic processing, individuals may vary in the ability
to decide actively whether or not to use holistic processing. Indeed,
it is interesting to note that d0 values for the four conditions sepa-
rately do correlate significantly and strongly with CFMT perfor-
mance, and that overall raw score on the Composite test
correlates significantly (and substantially) with performance on
all three other face tests. These correlations suggest that the basic
task of judging whether the top halves of two faces are the same or
different taps into common face-processing abilities.

It is interesting that we do not find a relationship between
Autism-Spectrum Quotient and holistic index, given the extensive
evidence that people with autism, and perhaps too some of their
relatives, differentially process details at the expense of the per-
ceptual Gestalt (Frith, 2012; Gauthier, Klaiman, & Schultz, 2009).
However, other studies have reported intact holistic face process-
ing in autistic individuals (e.g. Cleary, Brady, Fitzgerald, &
Gallagher, 2015; Joseph & Tanaka, 2003).

4.4. Self-rating of face-recognition ability

It is striking that a single self-rating of the ability to recognize
faces accounts for so much of the variance in CFMT performance
(17%). The correlation we observe (r = 0.41) is slightly higher than
a previously reported correlation between CFMT performance and
participants’ agreement with the statement ‘‘I can recognize
famous celebrities in photos or on TV” (r = 0.37; Wilmer et al.,
2014). However, our correlation is almost double that obtained
when participants judged their ability in comparison to ‘‘the aver-
age person” (r = 0.22; Bowles et al., 2009). The latter question
might be an external judgment (a question of comparison to an
unknown other, thus risking confounds of self-image), whereas
our question might tap an internal notion of ability.

4.5. Absence of genetic associations

Although our sample of 370 participants is large by the stan-
dards of phenotypic studies, it is small as a genome-wide associa-
tion study. Thus it may not be remarkable that we fail to identify
significant genetic associations of the four face tests in addition
to the one association with Mooney performance we have previ-
ously reported (Verhallen et al., 2014).
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